Math 623 Exam 1 Solutions

- Suppose that A ∈ M_n(F) has RREF of I_n. Prove that A may be written as the product of elementary matrices.
 See Ex. 0.18. We put A into RREF using elementary matrices E₁,..., E_k; i.e. I = E_kE_{k-1}...E₂E₁A. We then multiply both sides by the same matrix (repeatedly) to get E₁⁻¹E₂⁻¹...E_{k-1}E_k⁻¹ = A. The last observation we need is that the inverse of an elementary matrix is elementary, so in fact E₁⁻¹,..., E_k⁻¹ are each elementary matrices.
- Let J ∈ M_n(ℝ) be the matrix all of whose entries are 1. Find σ(J), and for each eigenvalue find a basis for the corresponding eigenspace.
 See Ex 1.1.5. Set e = (1, 1, ..., 1); we have Je = ne, so (n, e) is an eigenvalue-eigenvector pair. Set x_i = e ne_i; we have Jx_i = 0 = 0x_i, so (0, x_i) is an eigenvalue-eigenvector pair. However {x₁,...,x_n} is too big (it is dependent, since the sum is zero). Any subset of size n − 1 will be a basis for the eigenspace corresponding to eigenvalue 0. Note: there are no other eigenvalues since the ones we have found already have total multiplicity n.
- 3. Give an example of a matrix $M \in M_3(\mathbb{C})$ that is diagonalizable but not diagonal, and has fewer than 3 distinct eigenvalues.

See Ex. 1.3.9. The simplest approach is to start with a diagonal matrix Λ , then calculate $S\Lambda S^{-1}$ – this is guaranteed to be diagonalizable. We can try something like $\Lambda = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $S^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, which yields $M = S\Lambda S^{-1} = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

4. Calculate the adjugate and eigenvalues of $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

See Ex. 0.31. This is a straightforward computation; $adjA = \begin{bmatrix} 1 & 1 & -4 \\ -2 & -2 & 8 \\ 1 & 1 & -4 \end{bmatrix}, \sigma(B) = \{-1, 0, 5\}.$

5. Set $P_3(t)$ to be the set of all polynomials of degree at most 3, in variable t, with real coefficients. Find the rank and nullity of linear transformation $T: P_3(t) \to P_3(t)$ given by $T(f(t)) = t \frac{df(t)}{dt}$.

See Ex. 0.10. A basis for $P_3(t)$ is $\{1, t, t^2, t^3\}$, and we calculate $T(1) = 0, T(t) = t, T(t^2) = 2t^2, T(t^3) = 3t^3$. Hence the range of T is spanned by $\{t, 2t^2, 3t^3\}$; these are clearly linearly independent, hence the rank of T is 3. By the rank-nullity theorem, the rank plus the nullity is the dimension of $P_3(t)$, namely 4. Hence the nullity of T is 1.

6. A matrix $A \in M_3(\mathbb{C})$ is a square root of B if $A^2 = B$. Prove that every diagonalizable $B \in M_3(\mathbb{C})$ has a square root.

See 1.3.P7. Suppose B is diagonalizable; then there is invertible S where $B = SDS^{-1}$, where D = diag(a, b, c). Now, set $E = diag(\sqrt{a}, \sqrt{b}, \sqrt{c})$ (choose either square root if ambiguous), and $A = SES^{-1}$. We calculate $A^2 = SES^{-1}SES^{-1} = SE^2S^{-1} = SDS^{-1} = B$. [Note: \mathbb{C} is necessary, else we might not be able to take square roots.]

7. Let $A \in M_3(\mathbb{C})$ be skew-symmetric. Prove that $P_A(t) = -P_A(-t)$, and that if λ is an eigenvalue of A, so is $-\lambda$.

See 1.4.P2. Since A is skew-symmetric, we have $A = -A^T$. We calculate $P_A(t) = det(tI - A) = det(tI - (-A^T)) = (-1)^3 det(-tI - A^T) = -det((-tI - A^T)^T) = -det(-tI - A) = -P_A(-t)$. Suppose now that (λ, x) is a (right) eigenvalue-eigenvector pair for A. Then $Ax = \lambda x$. We take transposes to get $x^T A^T = \lambda x^T$, then negate to get $x^T (-A^T) = (-\lambda)x^T$ or $x^T A = (-\lambda)x^T$. Hence $(-\lambda, x)$ is a (left) eigenvalue-eigenvector pair for A, and hence $-\lambda$ is an eigenvalue for A.