Math 623 Exam 1 Solutions

1. Suppose that $A \in M_{n}(\mathbb{F})$ has RREF of I_{n}. Prove that A may be written as the product of elementary matrices.
See Ex. 0.18. We put A into RREF using elementary matrices E_{1}, \ldots, E_{k}; i.e. $I=E_{k} E_{k-1} \cdots E_{2} E_{1} A$. We then multiply both sides by the same matrix (repeatedly) to get $E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1}=A$. The last observation we need is that the inverse of an elementary matrix is elementary, so in fact $E_{1}^{-1}, \ldots, E_{k}^{-1}$ are each elementary matrices.
2. Let $J \in M_{n}(\mathbb{R})$ be the matrix all of whose entries are 1. Find $\sigma(J)$, and for each eigenvalue find a basis for the corresponding eigenspace.
See Ex 1.1.5. Set $e=(1,1, \ldots, 1)$; we have $J e=n e$, so (n, e) is an eigenvalue-eigenvector pair. Set $x_{i}=e-n e_{i}$; we have $J x_{i}=0=0 x_{i}$, so $\left(0, x_{i}\right)$ is an eigenvalue-eigenvector pair. However $\left\{x_{1}, \ldots, x_{n}\right\}$ is too big (it is dependent, since the sum is zero). Any subset of size $n-1$ will be a basis for the eigenspace corresponding to eigenvalue 0 . Note: there are no other eigenvalues since the ones we have found already have total multiplicity n.
3. Give an example of a matrix $M \in M_{3}(\mathbb{C})$ that is diagonalizable but not diagonal, and has fewer than 3 distinct eigenvalues.
See Ex. 1.3.9. The simplest approach is to start with a diagonal matrix Λ, then calculate $S \Lambda S^{-1}$ - this is guaranteed to be diagonalizable. We can try something like $\Lambda=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right], S=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], S^{-1}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, which yields $M=S \Lambda S^{-1}=\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$.
4. Calculate the adjugate and eigenvalues of $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$.

See Ex. 0.31. This is a straightforward computation; $\operatorname{adj} A=\left[\begin{array}{ccc}1 & 1 & -4 \\ -2 & -2 & 8 \\ 1 & 1 & -4\end{array}\right], \sigma(B)=\{-1,0,5\}$.
5. Set $P_{3}(t)$ to be the set of all polynomials of degree at most 3, in variable t, with real coefficients. Find the rank and nullity of linear transformation $T: P_{3}(t) \rightarrow P_{3}(t)$ given by $T(f(t))=t \frac{d f(t)}{d t}$.
See Ex. 0.10. A basis for $P_{3}(t)$ is $\left\{1, t, t^{2}, t^{3}\right\}$, and we calculate $T(1)=0, T(t)=t, T\left(t^{2}\right)=2 t^{2}, T\left(t^{3}\right)=$ $3 t^{3}$. Hence the range of T is spanned by $\left\{t, 2 t^{2}, 3 t^{3}\right\}$; these are clearly linearly independent, hence the rank of T is 3 . By the rank-nullity theorem, the rank plus the nullity is the dimension of $P_{3}(t)$, namely 4. Hence the nullity of T is 1 .
6. A matrix $A \in M_{3}(\mathbb{C})$ is a square root of B if $A^{2}=B$. Prove that every diagonalizable $B \in M_{3}(\mathbb{C})$ has a square root.
See 1.3.P7. Suppose B is diagonalizable; then there is invertible S where $B=S D S^{-1}$, where $D=\operatorname{diag}(a, b, c)$. Now, set $E=\operatorname{diag}(\sqrt{a}, \sqrt{b}, \sqrt{c})$ (choose either square root if ambiguous), and $A=S E S^{-1}$. We calculate $A^{2}=S E S^{-1} S E S^{-1}=S E^{2} S^{-1}=S D S^{-1}=B$.
[Note: \mathbb{C} is necessary, else we might not be able to take square roots.]
7. Let $A \in M_{3}(\mathbb{C})$ be skew-symmetric. Prove that $P_{A}(t)=-P_{A}(-t)$, and that if λ is an eigenvalue of A, so is $-\lambda$.
See 1.4.P2. Since A is skew-symmetric, we have $A=-A^{T}$. We calculate $P_{A}(t)=\operatorname{det}(t I-A)=$ $\operatorname{det}\left(t I-\left(-A^{T}\right)\right)=(-1)^{3} \operatorname{det}\left(-t I-A^{T}\right)=-\operatorname{det}\left(\left(-t I-A^{T}\right)^{T}\right)=-\operatorname{det}(-t I-A)=-P_{A}(-t)$. Suppose now that (λ, x) is a (right) eigenvalue-eigenvector pair for A. Then $A x=\lambda x$. We take transposes to get $x^{T} A^{T}=\lambda x^{T}$, then negate to get $x^{T}\left(-A^{T}\right)=(-\lambda) x^{T}$ or $x^{T} A=(-\lambda) x^{T}$. Hence $(-\lambda, x)$ is a (left) eigenvalue-eigenvector pair for A, and hence $-\lambda$ is an eigenvalue for A.

